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Abstract &./I I _ [

In this article, two importat methods of testing It to a distribution are discussed and compared.
They are the family of tests based on the empirical distribution function of a random sample,
and the family based on plotting the order statistics against a suitable set of constants and
eamining the fit of a line through the plotted points. The two sets will be called EDF tests
and Regression tests respectively.
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1 The goodness-of-fit problem

Suppose a random sample of n values z, z 2, z3s,... , z,. is given, and it is desired to test
that the sample comes from the distribution F(z; 0). The parameter 0 represents a vector
of parameters in the distribution; they may all be known, so that the tested distribution
is completely specified -this situation will be called Case 0 - or some or all of the
parameters may have to be estimated from the sample. Thus a test might be required
of the hypothesis that the sample comes from a normal distribution with mean I and
variance a 2, or that a sample comes from a Gamma distribution with scale parameter 0
and shape parameter m. For the present, we assume the distribution F(z; 0) is continuous.

V We shall sometimes write the distribution as F(z) for brevity.
1l



2 M. A. Stephew

2 EDF tests

_gmpinrical ditribution function of the sample is defined as follows:

~A~L''4 Ir 0, Z<(i),
, i/n, z(.) < x < Z(j+i), i = 1,2,...,n - 1,

!,~~~ ~~ 2: ,••., :•1 >X(,.).
The- EDF thus " e , for any value of.z, the fraction of the observations les than

!or equal to z; it clearly paels F() which gives the probability that an observation is
:'es than z. fact, byx th Glivenko-Canteni lemma, IF.(z) - F(z)l --1 0 as n --+ oo. In
1933 Koimogo proped• a test based on the discrepancy z.(z) - F.(z) - F(z), and
Smirnov followed by jPropoing two related tests. The Kolmogorov-Smirnov tests, as they
have come to be eaied, are defined as:

P+ = supjz,(z)); D_ = sup{-z,(z)}.

The- statý ti• actuaily introduced by Kolmoiorv was D = max(D+, D_). At about
the same time, Cram& and von Mimes were considering tests based on the integral of
zR(Z). The Cram&-von Mises family of statistics is

C = ,n f_ (z,.(•)}j,0,(•)F(x),C=

where O(z) is a weight function which can be used to vary the importance of different parts
of the x-axis. Two commonly-used weight functions are O(z) = 1, giving the Cramim-von
Mises statistic W1, and O(z) = {F(z)[1 - F(z)]} 1-, giving the Anderson-Darling statistic
A2 . In addition, W2 can be modified to yield Watson's statistic U2 given by

U2 = f' {F(x) - F(x) - fL[F,.(x) - F(z)] TFz}d~).

2.1 Computing formulas

The definitions of these statistics look rather difficult to handle, but in fact very easy
computing formulas exist. They are derived by means of the Probability Integral Trans-
formation (PIT). This is the transformation

z f P(z; 0).

It is well known that this trandormation gives a variable z which is uniformly dis-
tributed between 0 and 1, written U(O, 1). If the Kolmogorov-Smirnov and Cram4r-von
Mises statistics are now calculated from the EDF of the z-values, with F(z) = z, the uni-
form distribution, it may easily be shown that the values are the same as those calculated
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from the original z-diagram. The z-diagram then gives the computing formulas following,
with z(q = F(z(+, 0):

D+ = max[i/n- -y)];

D- = max[z(q - (i - 1)/nI;
D = max(D+,D);

W2=-1 F N 1 -r 2i-1 1212n2

U2 = W2 (i - 0.5)2 (where = (l);1

A 2 = -n - 1 E(2i - 1)[log Z(,) + log(1 - Z(,+1. (1)
n •

2.2 Estimated parameters

Suppose one or more components of 9 are unknown, but are estimated by an efficient
method from the sample values. These values are then inserted where necessary in the
PIT above, and the statistics are calculated from the resulting z-values using the formulas
(1). The unordered z-values are not now uniformly distributed; we describe them as super-
uniform, because they almost always give much smaller values for the statistics, implying
that the z-values are more evenly spaced than a genuine uniform sample.

2.3 Another transformation to uniformity

It is well-known that if events are occun-ing randomly in time, say at times t1, t2 ,..., to,

(the clock is started at time zero), and if the values are transformed by z(,) = t(q/t(,), the
set ofn - 1 values zyj,i = 1,2,...,n - 1, will be distributed U(0,1). An interesting set
of events which gives supeuiorm Z(,) are the ends of reigns (deaths or abdications) of
the Kings and Queens of England, starting with time zero as the accession of Widliam I in
1066 - it is hard to explain this phenomenon, even though it is obvious that successive
reigns have lengths which are correlated: see Pearson [1].

2.4 Distribution theory

When the continuous distribution tested is completely specified (this is called Case 0), so
that the test of fit becomes a test that the z-values are uniformly distributed, percentage
points of the EDF statistics are either known exactly, or can be approximated very accu-
rately. Details and tables are given by Stephens [2]. Furthermore, it is possible to modify
the statistics so that only the asymptotic points need be tabulated. To do this, a modified
form To of the EDF statistic T is used which is an easily calculated function of T and the
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sample size n. The resulting T" is then compared with the asymptotic points of the test
statistic. Modified forms and tables are given in Biometrika Tables for Statisticians, Vol
II, Table 54, and also in Stephens [2].

When parameters are estimated efficiently (that is, with asymptotic variances given
by the inverse of the Fisher information matrix), and used in the PIT to give the z-values
from which the statistics are calculated, asymptotic percentage points can be calculated
for statistics of the Cramir-von Mises family. These include W2 , U2 , and A2. The
asymptotic points depend on the distribution being tested , but not on location or scale
parameters in the distribution; however, they do depend on shape parameters such as
occur in the Gamma or Weibull or von Mises distributions. The points for finite n would
be very difficult to calculate, and would have to be determined by Monte Carlo methods.
Fortunately, for these statistics, the finite-n points converge very quickly to the asymptotic
points, so that the latter may be used for practical purposes - a test with very small
sample size would in any case have very little power.

For Kolnogorov-Smirnov statistics the distribution theory is more difficult. Again,
points will not depend on the true values of location or scale parameters, but even asymp-
totic points are very difficult to calculate. Such tables as exist have usually been found
by Monte Carlo methods. In addition, points for finite n do not converge rapidly to the
asymptotic points for these statistics, so that it is necessary to give either the finite-n
points (obtained by Monte Carlo) or modified forms, as was done for Case 0.

For both families of statistics, extensive tables of points are given by Stephens [2]
for testing for the normal, exponential, Gamma, Weibull, extreme-value, von Mises and
Cauchy distributions, so that the tests are available for practical use.

2.5 Power

The power of a test statistic will of course depend on several factors, including the size
(or a-level) of the test, the sample size, and especially on the alternative to the tested
distribution. Nevertheless, some general remarks can be made concerning the power of
EDF statistics:

1. As two-sided omnibus tests (that is, tests against all alternatives, or at least a wide
range of alternatives), the Cram&-von Mises family is more powerful in general than
the Kolmogorov-Smirnov family. This might be expected, as the former "tests" the
hypothesized distribution all along the range of values of z, while the latter looks
for a marked discrepancy between the EDF and the hypothesized F(z), possibly
only around one point.

2. For Case 0, there is a difference in power between the statistics, according to whether
the alternative distribution is mostly a change in the location of the distribution, or
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a change in the scale. W1 and A2 will detect a change in location, and U2 a change
in scale. The Kolmogorov statistic D also detects a change in location.

3. If there is a change in location, and the direction is known, the statistics D+ or D-
, can be very powerful; however, if the wrong statistic is used, the power can easily

be less than the a-level - that is, the test is biased. D+ detects the situation where
the true location is less than that tested, and D- detects the opposite situation.

4. When parameters are estimated, the differences between the powers for these various
types of alternative tend to fade, although the Cram&r-von Mises family will still be
better overall than the Kolmogorov-Smirnov tests.

5. On the whole, the recommended test statistic is the Anderson-Darling A2; it is
particularly effective in detecting outliers, that is, observations which are further
into the tails than expected, and this is often the situation which the tester most
wishes to detect.

Further details on all these statistics are given by Stephens [2]; a discussion of their use,
and comparisons with other statistics, for the "observations random in time" situation
described briefly above, is in Stephens [3].

3 Regression tests

3.1 Introduction

For the second part of this paper, we describe another group of tests, to be called regression
tests. They are based on a well-established and popular technique for testing fit to selected
distributions, the probability plot. In regression tests, the order statistics z(i) of a sample
are plotted on the vertical axis of a graph, against ti, a set of constants which depend
only on i, along the horizontal axis. (In the probability plot, the axes were reversed, but
for convenience in introducing test statistics we keep them as above). The constants ti
are chosen so that the relationship between the zi) and ti is approximately a straight
line. Historically, the linear relationship was often judged by eye, but more recently, test
statistics have been developed, based on the parameters associated with the straight-line
fit, when this is done by ordinary or generalised least squares.

Regression tests arise naturally when unknown parameters in the tested distribution
F(z; 9) are location and scale parameters. Suppose F(z; 0) is Fo(w), where Fo(w) is a
completely specified distribution and w = (z - a)/#; then 0 = (a,#) with a a location
parameter and P a scale parameter. A sample with order statistics zx( can be derived
from a set of values w from Fo(w) with order statistics w(,), by the relationship

+i1,...,n. (2)
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An obvious example is the test for normality, where the density of w is given by f(w) -
(2w)-1/2 exp(-W 2/2). Let f(w) = Jf. f(t) dt; then Fo(w) = #(w) and F(x; 0) = O(w)
with w = (x -p)la.

In the more general case, let mr = E(w(,)); then, from (2) we have

E(x(j) = a + flm, (3)

and a plot of x(i) against mi should be approximately a straight line with intercept a on
the vertical axis and slope P. The values mi are the most natural values to plot along the
horizontal aids, but for most distributions they are difficult to calculate. Various authors
have therefore proposed alternatives ti which are convenient functions of i; then (3) can
be replaced by the model

X(,)= a + fiti + Ci (4)

where ej is an "error" which only for t = mi will have mean zero.
It is then important to find a good method of testing how well the data fits the line

(3) or (4). One way is simply to measure the correlation coefficient r(:, t) between the
paired sets :(0 and ti. A second method is to estimate P using generalised least squares,
and to compare this estimate with the estimate of scale given by the sample variance. We
now examine these two procedures.

3.2 The correlation coefficient as test statistic

In discussing the correlation coefficient r(z, t), we extend the usual meaning of correlation,
and also that of variance and covariance, to apply to constants as well as random variables.
Thus let x refer to the vector x((),...,z(,), and t to the vector tl,...,t,.; let 2 = (0/n
and f = Yrti/n, and define the sums

S(:,t) = ](:(, - i) - = - t) n

S(t,,) =_.t2

S(z, x) will often be called S2 .
The correlation coefficient between x and t is

S(:,t),(,t=[s(x,--)s(t,t)]1/2" (5)

Statistics r(x, m) or r2 (x, m) are natural statistics for testing the fit of : to the model
(3), since if a "perfect" sample is given, that is, a sample whose ordered values fall exactly
at their expected values, r(:,m) will be 1; more generally, the value of r(z,m) can be
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interpreted as a measure of how closely the sample resembles a perfect sample. Tests
based on r(z,m), or equivalently on r2 (z,m), will be one-tailed, with rejection of H0

occurring only for low values of r.
However, as n --+ oo, r2 (z,m) --. 0 on H0 . A statistic which.does have an asymptotic

distribution is
Z(z,m) = n{1 - r2 (z, m)}. (6)

Then Z(z, m) is an equivalent statistic to r2, based on the sum of squares of the residuals
after the line (3) has been fitted. In common with many other goodness-of-fit statistics,
for example chi-square and the EDF statistics, Z(z, m) has the property that the larger
it is, the worse the fit. Sarkadi [4] showed consistency of the test based on r(z, m) for
normality, and Gerlach [5] has shown consistency for correlation tests based on r(z, m), or
equivalently Z(z, m), for a wide class of distributions including all the usual continuous
distributions. This is to be expected, since, for large n, we can expect our sample to
become perfect in the sense above. We can expect the consistency property to extend to
r(z, t) provided that t approaches m sufficiently rapidly for large samples.

3.3 The correlation test for the normal distribution

For the normal distribution N(p, oa2), f(w) = (2,r)-1/2 exp(-w 2 /2), with w = (z- -)/a;

thus a = p and # = a, and the 7N are the expected values of standard normal order
statistics. Equation (3) becomes

E(=(,)) = IA + am- (7)

For the normal distribution in- = 0, and r2(x, m) can conveniently be written in vector
notation. Let z be the vector (z(i),...,z(), and let m be the vector (mI,... ,Im,); let
primes, eg. z' and i', denote transposes of vectors or matrices.

Then r2(Xm) -

(8)
(m'tm)S2

The values of mi required for the calculation of r 2(z, m) have been well tabulated, and
good computer programs are also available.

This statistic will later on be seen to be identical to W', the Shapiro-Francia statistic,
so that, for testing normality, we shall refer to rP(z, m) also as W'. Tables for W' have
been given by Shapiro and Francia [6].

In practice, it is easier to interpolate in tables of Z(z,m) rather than r2 (z,m), and
Stephens [7] has produced tables for Z(z, m) for both complete and censored samples.
The null hypothesis that the sample comes from a normal distribution is rejected for
large values of Z(z, m).
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De Wet and Venter [8] have proposed the use of the statistic r(z, H), where H, =

0-1 (;). Use of H, makes distribution theory easier, and de Wet and Venter have given
the asymptotic null distribution of Z(z, H). The Hi must be found numerically, using one
of the excellent approximations available for 4b-(-). The values of H, and mi are close in
the middle of the sample, but are wider apart at the extremes. However, in Leslie et. al.
[91 it is shown that Z(x, H) and Z(z, m) have the same null asymptotic distributions.

3.4 The Shapiro-Wilk procedure

We next turn to the second method of testing mentioned above, in which the parameters
a and 0 in the model x(i) = a + jrnj are estimated by generalised least squares. Using
our previous notation, let w(0 be the order statistics from F(w) with a = 0 and P = 1; let
Mi = E(w(,)) as before, and let E(w(,) - mi)(wUj) - mi) = Vii, the covariance of w(,) and
w(j). Then let z be the column vector with components Z(i),... , z(), let m be a column
vector with components ml,...,m,m, and let 1 be a column vector with each component
equal to 1. Let V be the matrix with elements Vii. The generalised least squares estimates
of a and P are then

& = -•'Gz and &=1'Gz, (9)

where

G = V-1 (lM' - ml')V' (10)
(1,v-1)(m,'V-m) - (1'V-'m)(0

For some distributions, for example the normal and exponential, these equations simplify
considerably.

A method of testing fit has been proposed by Shapiro and Wilk [10, 11] for testing
normality and exponentiality. The procedure used is basically to compare the estimate
of #2 given by equation (9) with the estimate of #2 given by the sample variance; the
ratio of these estimates, multiplied by a constant, is taken as the test statistic. In the
case of tests for normality, slight modifications of the first estimate of 2 have also been
suggested, since the estimate is complicated to calculate.

For the Shapiro-Wilk test for normality, a and P in (3) are p and a respectively; the
estimates of these parameters given by (9) then become

iand a^ =

The test statistic proposed by Shapiro and Wilk [10] is

b2R' 11
S2C2

where S2 = i - •)2 - 2(3, - •)2, R 2 = m'V-1 m, and C2 = m'V-'V-Im. The
factors R4 and C 2 ensure that W always takes values between 0 and 1.
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Suppose the vector a is defined by a = V-m/C; then

W = i!f=
S2  S2

In order to calculate W, the vector a is needed, and this in turn requires values of m
and V-1, derived from V. For values of n between 21 and 50, Shapiro and Wilk used
approximations for the components ai of a, and gave a table of values of ai for sample
sizes from n = 3 to 50. They also gave Monte Carlo points with which to make the test.
The test is one-tailed: small values of W are significant.

A test similar to W, but for use with n _> 50, was later suggested by Shapiro and
Francia [6]. This is based on the observation of Gupta [12], who noted that the estimate
Sis almost the same if V` is ignored in equation (10); the test statistic then given by
Shapiro and Francia is

(rn':)
2

(n'm) 2S2

As has already been observed, this is equivalent to the sample correlation statistic r2(z, m).

3.5 Asymptotic equivalence of the Shapiro-Wilk and correla-
tion statistics

Thus we have the remarkable result that the Shapiro-Wilk statistic for testing normality
approaches the correlation coefficient r2(z, m). It is interesting to ask why this is so:
why V-1 can be "ignored" when calculating W. Stephens [13] has shown heuristically
that, for large n, m becomes an eigenvector of V, and Vm --+ Im; then V-'m -+ 2m,
m'V-lx --+ 2r'z, and m'V-lm --+ 2m'm. Hence W --+ W' because the factor 2 cancels
in the numerator and denominator of W. The above results were proved rigorously by
Leslie [14]. Stephens [13] also gives other asymptotic eigenvalues and eigenvectors of V.

4 Power comparisons

Shapiro and Wilk [10] gave power results for W, based on Monte Carlo studies. Unfortu-
nately, the comparisons with EDF statistics were inaccurate - the EDF statistics were
compared with Case 0 tables, and not the Case 3 tables to be used when the parameters #
and o, are estimated by i and a. Stephens [15] later gave comparisons based on the correct
tables. These show that W is barely superior overall to EDF statistics, and especially
only slightly superior to the Anderson-Darling A2. Both statistics tend to have higher
power than older statistics such as b, and b2, the coefficients of skewness and kurtosis.
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5 Two questions

The above results show that W, equivalent to the correlation coefficient r 2 (z, m), appears
to give overall the most powerful omnibus test for normality. Two questions can then be
asked:

(a) Will the Shapiro-Wilk procedure give good tests for other distributions?

(b) Will the correlation coefficient be successful for testing other distributions?

With reference to the first question, we first observe that for other distributions tested,
the Shapiro-Wilk procedure will not necessarily lead to a statistic which is asymptotically
equivalent to the correlation coefficient.

For the exponential distribution, where F(z; 0) = 1 - exp{-(z - a)/#}, provided z >
a, (thus F(w) = 1 - exp(-w), and 9 = (a, a)), the estimates in (3) become

& = z(l) and n = (n- 0))
(n -1)"

The ratio '2/S2, omitting some factors involving n, leads to the statistic

WE= (n - 1)S 2 *

Although this statistic has been proposed, and points given, for testing exponentiality
(Shapiro and Wilk [11], Currie [16]), it has not proved powerful (Stephens [31). Fur-
thermore, it does not provide a consistent test, which means that there will be some
distributions, not exponential, which would not be detected with power approaching 1,
when the test for exponentiality is applied to large samples. Sarkadi [4] first pointed this
out, by observing that WE is equivalent, for large samples, to the coefficient of variation
(CV) of the sample. To fix ideas, suppose a is known to be zero (this is frequently the
case when the exponential distribution is used, although the discussion which follows is
easily adapted to the case where a is not zero). Then, for large n, x(1) --+ a = 0, and
WE -* + 2/S 2 . The coefficient of variation is S2/_ 2 , so that WE -+ 1/CV, and for large n,
this is 1. However, many distributions have CV = 1, and a very large sample from one of
these will have a WE also approaching 1. The power of WE will then approach a constant
(less than 1) depending on the variance of WE.

Spinelli and Stephens [17] have given power studies with samples taken from some
other distributions with CV = 1, where the power of WE is seen to diminish as the
sample size n increases. Lockhart and Stephens [18] have explored the question of non-
consistency further, and have shown that only for a very limited family of distributions,
including the normal, does the Shapiro-Wilk procedure give a consistent test. Thus this
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technique of basing a test on the ratio of the regression estimate of scale to that given by
the sample standard deviation cannot be recommended except for the normal case.

We now turn to the second question above. Since the correlation coefficient is powerful
for testing normality, will it be equally successful for tests on other distributions? First,
it should be emphasised that the most appropriate correlation is that between z and
m: in the normal case, HA = - 1 {i/(n + 1)} was "sufficiently close" to m that the
correlations r(z, H) and r(z, m) were approximately equal for large samples, and so had
the same power. This is not so for other distributions. For example, for the exponential
distribution, mi = Fi.,(n + 1 - j)-1 , and Hi = - log{1 - i/(n + 1)}, and these are not
dose enough in the tails to give r(z, H) as much power as r(z, m). We can expect this
result to be true also for other long-tailed distributions, and the question of when r(x, H)
can replace r(z, m) for those distributions for which m is hard to calculate is itself an
interesting research topic. See, for example, McLaren and Lockhart [19].

We therefore confine further discussion to the properties of r(z, in). We have seen
that, in contrast to W, r(z,m) always gives a consistent test. However, McLaren and
Lockhart [19] show that the asymptotic relative efficiency of correlation tests can be zero
compared with EDF tests.

Stephens [20] adapted WE to test exponentiality in the case where a is known; this
can be compared with most power studies on other statistics which usually assume a = 0.
Stephens Ste86c gives some tables for comparison, and these demonstrate that the W
statistics are in general less powerful than EDF statistics.

6 Censored data

One attraction of correlation statistics is the fact that the correlation coefficient is well-
known to most applied statisticians, and the formula is very easy to calculate. This is true
also for censored observations of types I or II, where missing observations are all at one
end of the sample, often in the right-hand tail where higher values occur. Because of this
appeal, Stephens [7], as was stated earlier, gives many tables of Z(z, m) = n{1 -r 2(z, M) ),
or of the corresponding Z(z, H), for use with right-censored data and for testing the
exponential, Weibull and other distributions. EDF statistics have also been adapted
for censored data, and formulas and tables for these statistics are given by Stephens
[2]. For censored data, as for full samples, the statistics Z(z, m) and Z(z, H) may not
be as powerful in general as EDF statistics; much depends on the influence of the tail
observations which are lost by censoring. Finally, randomly censored data poses a unique
problem in testing fit. The Kaplan-Meier estimate of F(x) can be used for EDF statistics,
and r2(z, m) can still be calculated if it is known which ordered observations have been
lost, but in either case tables are difficult to provide. More work is needed on this topic.
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7 Tests for discrete distributions

Until now, tests have been discussed only for continuous distributions. The correlation
coefficient and the Shapiro-Wilk procedure do not adapt readily to discrete distributions,
but EDF tests can be adapted. The technique is based on measures of discrepancy
between the cumulative histograms of observed values and expected values (Pearson's X2

measures the discrepancy within each cell, and does not sum the observeds and expecteds).
Pettitt and Stephens [21] gave some distribution theory for the Kolmogorov-Smirnov
statistic for testing uniformity, and Freedman [22] discussed the Watson U2 statistic, one
of the Cramir-von Mises family, for the discrete uniform test. Recently, Lockhart and
Stephens [23] have extended the test to include W 2 and A2 , and Spinelli and Stephens
[24] develop a test for the Poisson distribution using Cram&-von Mises statistics. Power
studies show these tests to be quite effective. In particular, for the test for normality, the
EDF statistics will be more powerful than Pearson's X2 when the alternative is a trend
in the cell probabilities - for example, to test that the probability of a defective item
produced in a factory is the same each week, against the alternative that it decreases with
time.

8 Summary and final remarks

In this paper we have reviewed two important methods of testing fit - EDF statistics
and regression methods based on the probability plot. Tests based on the EDF and those
based on the correlation coefficient r(z,m) are consistent, whereas those derived from
use of the Shapiro-Wilk procedure are not consistent in general. The exception is the
test for normality. For large samples, the correlation coefficient, however, can have low
efficiency compared with EDF tests. For smaller samples, and for censored data, the
situation is less clear, and more work is needed. Of course, other techniques for testing
fit exist, based on Pearson's X2, on spacings, or on the empirical characteristic function.
In general, for tests for continuous distributions, Pearson's X2 has low power compared
with EDF statistics, due to the loss of information resulting from the grouping required.
EDF statistics compare well with the other methods also, and, for overall testing against
omnibus alternatives, these statistics are recommended. For specified limited alternatives,
clearly other tests (for example the Likelihood Ratio test) can have good properties.
Stephens [2, 3, 7] discusses these issues, but much more research can be done, both on
mathematical aspects of the statistics, and on practical comparisons of tests.



Aspects of Goodness-of-Fit 13

References
[1] E. S. Pearson. Comparison of teots for randomness of points on a line. Bion i 50

315-325 (1963).

[2] M. A. Stephens. Tests based on EDF statistics. Chapter 4 in Goodnes.of-fit techniques
(]LB. d'Agostino and M.A. Stephens, eds.). New York: Marcel Dekker (1986).

[3] M. A. Stephens. Tests for the exponential distribution. Chapter 10 in Goodness-of-fit tech-
niques (]LB. d'Agostino and M.A. Stephens, eds.). New York: Marcel Dekker (1986).

[4] K. Sarkadi. The consistency of the Shapiro-francis test. Biiaetrika 62 445-450 (1975).

[5] B. Gerlach. A consistent correlation-type goodness-of-fit test; with application to the two-
parameter Weibull distribution. Math. Operationsforsch. Statist. Ser. Statist. 10 427-452
(1979).

[6] S. S. Shapiro and RL S. Francia. Approximate analysis of variance test for normality. J.
Amer. Statist. Auoc. 67 215-216 (1972).

[7] M. A. Stephens. Tests based on regression and correlation. Chapter 5 in Goodnese.-f-fit
terhnique. (]LB. d'Agostino and M.A. Stephens, eds.). New York: Marcel Dekker (1986).

[8] T. De Wet and J. H. Venter. Asymptotic distribution of certain test criteria of normality.
South African Statist. J. 6 135-149 (1972).

[9] J. Leslie, S. Fotopoulos and M. A. Stephens. Asymptotic distribution of the Shapiro-Wilk
W for testing normality. Annals of Statistics 14 1497-1506 (1986).

[10] S. S. Shapiro and M. B. Wilk. An analysis of variance tat for normality (complete samples).
Biontetrika 52 591-611 (1965).

[11] S. S. Shapiro and M. B. Wilk. An analysis of variance test for the exponential distribution
(complete sample). Teainometric. 14 355-370 (1972).

[12] A. K. Gupta. Estimation of the mean and standard deviation of a normal population from
a censored sample. Biometrik. 30 266-273 (1952)

[13] M. A. Stephens. Asymptotic properties for covariance matrices of order statistics. Bionet-
rika 62 23-28 (1975).

[14] J. Leslie. Asymptotic properties and a new approximation for both the covariance matrix
of normal order statistics and its inverse. Colloq. Math. Soc. Janos Boiiai on Goodness of
Fit 45 (1984).

[15] M. A. Stephens. EDF statistics for goodness-of-fit and some comparisons. J. Amer. Statist.
Assoc. 69 730-737 (1974).



14 M. A. Stephens

[161 I. D. Curuie, The upper tail of the distribution of W-exponentiaL S&Gnd J. Statist. 7
147-149 (1980).

[17] J. J. Spinelli and M. A. Stephens. Tests for exponentiality when origin and scale parameters
are unknown. Technemetvics 29 471-476 (1987).

[18] R. A. Lockhart and M. A. Stephens. The non-consistency of the Shapiro-Wllk procedure.
Research report, Dept. of Mathematics and Statistics, Simon Fraser University (1992).

[19] G. D. McLaren and R. A. Lockhart. On the asymptotic efficiency of certain tests of it.
Cans. J. Statist. 15 159-167 (1987).

[20] M. A. Stephens. On the W test for exponentiality with origin known. Technome.rice 20
33-35 (1978).

[21] A. N. Pettitt and M. A. Stephens. The Kolmogorov-Smirnov goodness-of-fit statistic with
dicrete and grouped data. Teckhnometric 19 205-210 (1977).

[22] L. Freedman. Watson's U2 statistic for discrete distributions. Biometviba 68 708-711
(1981).

[23] R. A. Lockhart and M. A. Stephens. Cramir-von Mises statistics for discrete distributions.
Research report, Dept. of Mathematics nd Statistics, Simon Fraser University (1992).

[24] J. J. Spinefi and M. A. Stephens. EDF tests for the Poisson distribution. Research report,
Dept. of Mathematics and Statistics, Simon Fnser University (1992).

L -



:8Gjmiy C&A5FgqATM or ?wlte waos mfUt &me Gme

REPORT C IBURENATION PAGE IWAD mrca

474 'IlLS ,meumm s"I. A. Hx=6 0w SEP06 CA & 6 U O U E

ASPECTS OF GOODNESS OF FIT Teckmical.

Michael A. Stephens N'0025-92-J-1264

Dieparcou: of Statis tics
Stanford Un±vesT3±1
Stanford, CA 94305-4065 SR"'042-267

I-. C@USLLIU016OP @ 4"9 ANDt A6011W LOOSES "To6 y
Office of Naval R.esearch September 30, 1993
Statistics & Pr*6abil':7 ?-.otrmu 3.L-nT

Code I!. L~.E
SO- 1040WI@RhS40 A4GE1SC NaSta a A0015W98 a Sm Gmed Oksi I UW .A W 0e

Unclassifiso

IL 098TWmTOUTW STATKUMEN Vol 000 *inW4

- - Approved for public ruleas.; distribution unl±.±ted.

17. *?srosJIur STAEUESO'. (of 0040 mnemsamee.eu a& Um swaso &u em 4

'3L S&JPPLMSUTAU NO9 '114 Mt. OP"Now. Am=~0 PI?4DSN CONamw~ w T=I ram.f
ANE THOSE OF THE AUTHO1m AND BMOUW VCT Bg CO4SVhUEO A3
AN OFFI0AL DUPARIMEN OF THE AWAY POSM.W7. PMuCY. OR as&
011WK WLOLS no OgnwmAT sy aTHE DOCAUUNTATON.

!9. may won"S Wdomswi m #sum.. a ss* f elm' a. edmeu or Now U

Key Wm*:. Carrealalm tests; EDF tests; Probablty plo; laresslm test; Twst for wpmnw-
tality; Test for norm~alty.

htis article, two impormtantmehodis of testig ft to & distribti on r dicused and compared.
They are th. fainly of test based on the esapiuic ditrbution fuatim of a madam sampl,
and the Ufaml based cm plotting the order statistics aglaist a suita"l st of cnstant and
aml~nlag the fit of a line through the ploftte points. The two set wi be called EDF test
and loapeulm ties ts epectil.

*SI $10.30" 147 £asDsw euew' e essg


